The Standard I/O Library

Unit 7 Objectives

o Perform file |/O operations using the
Standard | /O Library

e Choose appropriate read/write functions
for a given task

¢« Perform random access on a file

Identify the differences between system
buffers and "buffers" within the user
program |

« Describe the concept of buffered |/O

I/O Overview

o C does not have built in 1/O statements

e |/Ois accomplished via
- Standard I/O Library Functions

- System Calls

Standard 1/OC Functions System Calls
Portable* Not portable*
Functions in a library Part of the op. sys.
Medium - Hi level Low level

Variety of read/write functions | Limited number

Buffered Unbuffered

* to other operating systems

Review and Preview of
Standard 1/0O Functions

/O for
stdin and stdout File 1/0
Character
getehar() fgete()
putchar() fpute()
ungete()
Line
gets() foets()
puts() fouts()
Formatted
. scanf{) facanf()
printf() fprintf()
Record
- fread()

fwrite()

5 Steps to Perform File 1/0
#include {stdio.h>
Declare one FILE pointer per file
Open the file with fopen()
Use Standard |/O read/write functions

Close the file with fclose()

Important Constants in stdio.h

EOF End-of-file error value

NULL 0 or
(void *)0 in the new ANSI Standard

BUFSIZ Size of an /O buffer

FLE A structure typedef, stores
info about an open file

stdin Pointer to FILE opened for standard input
stdout Pointer to FILE opened for standard output

stderr Pointer to FILE opened for standard error

The FILE Structure
» Holds information about an open file

« Anarray of FILE structures is used by the
Standard Library functions

e The Programmer
- Does not need to know format of FHLE

- Must declare one FILE pointer per open file

Opening a File - fopen()

SYNOPSIS Ainclude <{stdio.h>
FILE *fopen(file-name, type)
char *file-name, *type,

DESCRIPTION The file named is opened
according to type which may be

Ilr|'| 1'1r+
1IWII "W—i—”
1Ialf "a—l—"

Returns NULL on failure,

EXAMPLE

#include - <stdioc.h>

main ()

o
FILE *fp
fp = fopen("logfile", Mgyt
if (fp == (FILE *)NULL)
printf ("Open failed\n"):;

= O W 1O W e

.

Effect of a Successful
Open on a File

L] L1

r W a
read write append
File - Old contents -
Exists discarded
Hle
Does Not | Error | File created File created
Exist
e 'r+", "w+", "a+" Updating
Allows reading and writing
o 'r4" Commonly used to read and

change an existing file

L LI S RO R S Y o+ R R 2 TR ST

e LI Py S R

Sample Program Using
fopen() and fclose()

AFoInis progrer copies.a file. */
AE Ao 1] is conied to angu[2] .5/

Finclude <ztdio.h>

main{args, argv)

int = = el
char raragv (] :
ot Sripe |

it (arge < 3)%
printf ("2 FILE NAMES REQUIRED\R"):
exit (1)
3 :

if ((rp=fopen(argv[l]."r")) == (FILE *)NULL)
printf{"Can't open Zs\n",argv[1]}:
exit(2) .
I

Lf ((wo=fopen(argv[2]."w")) == (EILE *)NULL)
printf{"Can't open ¥s\n",argv[2]}:
fclose (rp):
exit(3).:
i

/* Read/write functions shown later */

felose(rp) ;

fclose (wp) ;

Exercise - fopen()

SYNOPSIS #include <stdioh

FILE *fopenf{file-name, type)
char *file-name, *type;

1. The synopsis shows that fopen() returns a FILE pointer
(FILE *). Since it does not return an integer, the function
should be declared before it is used. Why isn't fopen()

declared on page 7-19°7

2. For the given application, supply the appropriate second

argument to fopen().

Frogram's action

Command line

Function call

Frints lines of file
that contain pattern.

grep pattern file

fp = fopen(argv[2], "?™);

Frints a copy of the

file on a line printar;
adds filename and times
to logfile

lineprint file

fp = fopen("logftile”, "7';

Fegisters conference
participants; queries

and updates “"reg.db”,
an existing database.

reqister

fp = fopen("reg.db”, "7?);

Records logon and logofi
times on a multiuser system.
The program is run once daily;
"fetcfusage” containg info
anly about current day.

rackusers

e ———

fp = fopen("/etc/usage”, "?");

Choosing the Appropriate
Read/Write Function

Normally Used With

Character
fgetc Text files (ASCII, EBCDIC)
fputc
ungetc

Line
fgets Text files (ASCII, EBCDIC)
fputs

Formatted
fscanf Text files (ASCIl, EBCDIC)
fprintt

Block

fread Cata files
fwrite

Using read/write functions

/* Each program fragment copies a file */

/* Character by character */
while ((c = fgete(rp)] 1= EQF)
fputc (s, wp):

/* Line by line */
char Paf[2s56]:

while (fgets(buf, 256, rp} != (char *) NULL)
fputs (buf, wp) ;

/* According to a specific format */
char name [4Q] ;
int id:

while (fscanf(rp,"%s ¥d'", name, &id) != EOEF)
fprintf {(wp, "¥s ¥Yd\n", name, id):;

/* One structure at a time */
struct info {
char name [50] ;
int id;
} part;

while (fread((char *)&part,sizeof(part).l,.rp) !=C
furite [(char *)&part,sizecf (part) ., 1l,.vwp):

A Closer Look at
Character I/0: ungetc()

SYNOPSIS int ungetc(c, stream)
int ¢
FILE *stream;

DESCRIPTION Puts one character back on input stream
providing the stream was previously read.
MNext read operation will read that charact

EXAMPLE

/* Skips over any number of white space */
/* characters in input file */

void
slkip_whites (fp)
FILE *fp:
5

Wy iy e

while ((c = fgetc(fp)) = " ' ||

c == "\t' || ¢ = ‘\n')
/* Mull loop beody */

ungetc (e, fp); /* Put non-white back */

¥

Buffered I/O

The Standard |/O Library provides "buffered | /O"

Minimizes device access for efficiency

Buffer:
- Temporary storage area in main memory

- Holds data to be read or written

Data is transferred to/from devices in large
chunks (BUFSIZ bytes)

Buffered 1/0: Accessing a Disk File

Process in Main Memory
Text

Cata

stdin
stdout
| Ja_ siderr

Array of
FILE Structures

User Bulfer i

(BUFSIZ) bytes

User Buffer

System Buffers

EEe
"""""" sack e
Nl
N

DISK

' ™ i B T " PR R "= A e i s . e i i

Flushing a Buffer

SYNOPSIS fflush(stream)
FILE *stream;

DESCRIPTION Causes buffered data to be written
to stream. May be called explicitly
by programmer. Called by fclose().
Called by exit() for each open file.

EXAMPLE

1 /* Program to register concert attendees */
2 #include <stdie.h>

10 struct seat_rsvtn seat;

20 fwrite((char *)é&seat, sizeof(seat). 1, fp):
51 fflush(fp): /* Update file now * /

Random Access - fseek() and ftell()

SYNOPSIS

DESCRIPTION

EXAMPLES

int fseek(stream, ofiset, ptrname)
FILE *stream;

long offset;

int ptrname;

long ftell{stream)
FILE =*stream;

Jseek sets position of next read/write
operation on the siream, offset bytes
from pirname which has the values:

0 top
1 current
2 end

Heturns non-zero for improper seeks,
otherwise 0,

ftell returns offset of current byte
from top of file.

fseek (fp, OL, O);/* rewind */

fgsaal (fip, OL, 2):/* bottom of File */

/* back up one structure */

fseek(fp,

- (long)sizeof (struct emp)}. 1):

O 0 <] Ron b G b H

Random Access - Sample Program

/* Prints stered infeo akout part requested */

finclude
struct
char
inmt
int
¥ part;
main ()
{
EILE
long

<cstdio.h>

part_infeor {
desc [20] ;
qry;

cost;

k2] oy o
iy

’

1 ((rptr=fopen(’ podata”,"r")) ==
fprintf (stderr,"Can't open data file.\r

(FILE *)NULL

exit (1) ;
¥
printf {"Enter sequence number of record: ");

scanf ("¥1d". &x);
fzmali{rptr, (long) (¥ - 1) * sizeof(part)) 0):
fread{ (char *)&part,sizeof({part).l,rptr);

printf (" ¥=s\Exd\tyd\n". part.de=zc,

part.gty, part.cost):

139
20
21
22
23
24
25
26

Random Access When
Updating a File

+ Update means:
Reading and writing

llr+lr' “W—!—“I Ira+
« Must flush buffer between reads and writes
using fseek() or rewind()

Hineluds ﬂstdiq.hr

/* Change all cost fields in an inventory */

/* file composed &f structures */

while(fread((char *)é&part.sizeof(part).l,fp)!= 0){
part.cost *= 1.07;
fseek (fp, =-(leng)sizeof(part), 1): /* back up */
fwrite((char *)é&part, sizeof(part), 1, fp):
fseek (fp,0L,1): /* flush buffer before next read *

5

s

Error Handling Functions

SYMNOPSIS Finclude <{stdioh>

int feof(stream)
FILE *stream;

DESCRIPTION
feof() returns non-zero if end of file was
previously reached during a read, else O,
while (1) {

n = fread(. buf, 1, BUESIZ, rp):
fwrite(buf, 1, n, wWwp):
L i faof{rpi

break:;

Other Error Handling Functions

SYMOPSIS Finclude <stdioh®

int ferror{stream)
FILE *stream;

void clearerr(stream)
FILE *siream;

DESCRIFTION
ferror() returns non-zera if a
previous 1/O error occurred, else 0.

clearerr() resets error and eof
indicators to 0.

/* Try MAX times to read device */
success = 0O
clearerr (rp) ;
for (i =1; i < MAX; i+t+) {
fread(buf., BUESIZ, 1., .rp):;
if . tfercom(np)esidif
success = 1;
brealc;

I

clearerr (rp) ;
e
if (success)
printf ("read successfuli\n"):
else
printf ("Max retries - read failed\n"):

Unit 7 Summary

5 Steps to Perform File I/O
1. Fincluede {stdioh’s
2 Declare one FILE pointer per file
2 Open the file with fopen()
4 Use readwrite functions
5. Close the file with fclose])

Random Access:

SYMOPSIS #include {stdioh’
int fseek{stream, offset, ptrnames)
FILE *stream;
long offset;
int ptrrame; f* 0-top, 1-current, 2-end */

long ftell{stream)
FILE *stream;

Error Handling:

SYNOPEIS #include <stdioh>
int feof{stream)
FILE *stream;

int ferror{stream)
FILE *stream;

voidd clearerr(stream)
FILE #*stream;

tr See Manual For Cther 1/0 Functions @

